Scale robust IMU-assisted KLT for stereo visual odometry solution

نویسندگان

  • Lounis Chermak
  • Nabil Aouf
  • Mark A. Richardson
چکیده

We propose a novel stereo visual IMU-assisted (Inertial Measurement Unit) technique that extends to large inter-frame motion the use of KLT tracker (Kanade–Lucas–Tomasi). The constrained and coherent inter-frame motion acquired from the IMU is applied to detected features through homogenous transform using 3D geometry and stereoscopy properties. This predicts efficiently the projection of the optical flow in subsequent images. Accurate adaptive tracking windows limit tracking areas resulting in a minimum of lost features and also prevent tracking of dynamic objects. This new feature tracking approach is adopted as part of a fast and robust visual odometry algorithm based on double dogleg trust region method. Comparisons with gyro-aided KLT and variants approaches show that our technique is able to maintain minimum loss of features and low computational cost even on image sequences presenting important scale change. Visual odometry solution based on this IMU-assisted KLT gives more accurate result than INS/GPS solution for trajectory generation in certain context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual-LiDAR Odometry Aided by Reduced IMU

Abstract: This paper proposes a method for combining stereo visual odometry, Light Detection And Ranging (LiDAR) odometry and reduced Inertial Measurement Unit (IMU) including two horizontal accelerometers and one vertical gyro. The proposed method starts with stereo visual odometry to estimate six Degree of Freedom (DoF) ego motion to register the point clouds from previous epoch to the curren...

متن کامل

A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors

State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situat...

متن کامل

An Efficient Closed-Form Solution to Probabilistic 6D Visual Odometry for a Stereo Camera

Estimating the ego-motion of a mobile robot has been traditionally achieved by means of encoder-based odometry. However, this method presents several drawbacks, such as the existence of accumulative drifts, its sensibility to slippage, and its limitation to planar environments. In this work we present an alternative method for estimating the incremental change in the robot pose from images take...

متن کامل

A Robust Method for Ego-Motion Estimation in Urban Environment Using Stereo Camera

Visual odometry estimates the ego-motion of an agent (e.g., vehicle and robot) using image information and is a key component for autonomous vehicles and robotics. This paper proposes a robust and precise method for estimating the 6-DoF ego-motion, using a stereo rig with optical flow analysis. An objective function fitted with a set of feature points is created by establishing the mathematical...

متن کامل

Robust monocular visual odometry for road vehicles using uncertain perspective projection

Many emerging applications in the field of assisted and autonomous driving rely on accurate position information. Satellite-based positioning is not always sufficiently reliable and accurate for these tasks. Visual odometry can provide a solution to some of these shortcomings. Current systems mainly focus on the use of stereo cameras, which are impractical for large-scale application in consume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Robotica

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2017